Abstract

Abstract Related to generalized arithmetic triangle, we introduce the hyper (r, q)-Fibonacci polynomials as the sum of these elements along a finite ray starting from a specific point, which generalize the hyper-Fibonacci polynomials. We give generating function, recurrence relations and we show some properties whose application allows us to extend the notion of Cassini determinant and to study some ratios. Moreover, we derive a connection between these polynomials and the incomplete (r, q)-Fibonacci polynomials defined in this paper.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.