Abstract

Data transmission rate in molecular communication systems can be improved by using multiple transmitters and receivers. In molecular multiple-input multiple-output (MIMO) systems which use only single type of molecules, the performance at the destination is limited by inter-symbol interference (ISI), inter-link interference (ILI) and multi-user interference (MUI). This work proposes a new hybrid modulation for a system with multiple transmitters and receivers which uses different types of molecules to eliminate ILI. Further, to enhance the data rate of the proposed system under ISI and MUI, Mary CSK modulation scheme is used between each transmitter-receiver pair. In this paper, the random locations of transmitters present in the three dimensional (3-D) space are modeled as homogeneous Poisson point process (HPPP). Using stochastic geometry tools, analytical expression is derived for the probability of symbol error for the aforementioned scenario. Finally, the performance of the proposed system is compared using the different existing modulation schemes such as on-off keying (OOK), binary concentration shift keying (BCSK) and quadruple concentration shift keying (QCSK) to develop several important insights.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.