Abstract
We study stability and convergence of hp-streamline diffusion (SD) finite element, and Nitsche's schemes for the three dimensional, relativistic (3 spatial dimension and 3 velocities), time dependent Vlasov-Maxwell system and Maxwell's equations, respectively. For the hp scheme for the Vlasov-Maxwell system, assuming that the exact solution is in the Sobolev space HS+1(Omega), we derive global a priori error bound of order O(h/p)(s+1/2), where h(= max(K) h(K)) is the mesh parameter and p(= max(K) p(K)) is the spectral order. This estimate is based on the local version with h(K) = diam K being the diameter of the phase-space-time element K and pR-is the spectral order (the degree of approximating finite element polynomial) for K. As for the Nitsche's scheme, by a simple calculus of the field equations, first we convert the Maxwell's system to an elliptic type equation. Then, combining the Nitsche's method for the spatial discretization with a second order time scheme, we obtain optimal convergence of O(h(2) +k(2)), where h is the spatial mesh size and k is the time step. Here, as in the classical literature, the second order time scheme requires higher order regularity assumptions. Numerical justification of the results, in lower dimensions, is presented and is also the subject of a forthcoming computational work [22].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.