Abstract

We show that if a finite dimensional Hopf algebra H over C has a basis with respect to which all the structure constants are nonnegative, then H is isomorphic to the bi-cross-product Hopf algebra constructed by Takeuchi and Majid from a finite group G and a unique factorization G=G+G− of G into two subgroups. We also show that Hopf algebras in the category of finite sets with correspondences as morphisms are classified in a similar way. Our results can be used to explain some results on Hopf algebras from the set-theoretical point of view.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.