Abstract

The main result of this article is: THEOREM. Every homogeneous locally conical connected separable metric space that is not a $1$-manifold is strongly $n$-homogeneous for each $n \geq 2$ and countable dense homogeneous. Furthermore, countable dense homogeneity can be proven without assuming the space is connected. This theorem has the following two consequences. COROLLARY 1. If $X$ is a homogeneous compact suspension, then $X$ is an absolute suspension (i.e., for any two distinct points $p$ and $q$ of $X$, there is a homeomorphism from $X$ to a suspension that maps $p$ and $q$ to the suspension points). COROLLARY 2. If there exists a locally conical counterexample $X$ to the Bing-Borsuk Conjecture (i.e., $X$ is a locally conical homogeneous Euclidean neighborhood retract that is not a manifold), then $X$ is strongly $n$-homogeneous for all $n \geq 2$ and countable dense homogeneous.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.