Abstract

We consider a Hamiltonian system which has an elliptic–hyperbolic equilibrium with a homoclinic loop. We identify the set of orbits which are homoclinic to the center manifold of the equilibrium via a Lyapunov–Schmidt reduction procedure. This leads to the study of a singularity which inherits a certain structure from the Hamiltonian nature of the system. Under non-degeneracy assumptions, we classify the possible Morse indices of this singularity, permitting a local description of the set of homoclinic orbits. We also consider the case of time-reversible Hamiltonian systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.