Abstract
The paper is devoted to studying the bifurcation of periodic and homoclinic orbits in a 2n-dimensional Hamiltonian system with 1 parameter from a TB-point (Hamiltonian saddle node). In addition to the proof of existence, the paper gives an expansion formula of the bifurcating homoclinic orbits. With the help of center manifold reduction and a blow up transformation, the problem is focused on studying a planar Hamiltonian system, the proof for the perturbed homoclinic and periodic orbits is elementary in the sense that it uses only implicit function arguments. Two applications to travelling waves in PDEs are shown.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Zeitschrift f�r Angewandte Mathematik und Physik (ZAMP)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.