Abstract
In general a homogeneous space admits many invariant affine connections. Among these are certain connections which appear in many ways to be more natural than the others. We refer to the connections which K. Nomizu in [4] calls canonical affine connections of the first kind. When G is a compact connected Lie group and K a closed subgroup we called an invariant Riemannian metric on G/K, natural (in [2]) when it induced such a connection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.