Abstract

Based on n randomly drawn vectors in a Hilbert space, we study the k-means clustering scheme. Here, clustering is performed by computing the Voronoi partition associated with centers that minimize an empirical criterion, called distorsion. The performance of the method is evaluated by comparing the theoretical distorsion of empirical optimal centers to the theoretical optimal distorsion. Our first result states that, provided that the underlying distribution satisfies an exponential moment condition, an upper bound for the above performance criterion is $O(1/\sqrt{n})$ . Then, motivated by a broad range of applications, we focus on the case where the data are real-valued random fields. Assuming that they share a Hölder property in quadratic mean, we construct a numerically simple k-means algorithm based on a discretized version of the data. With a judicious choice of the discretization, we prove that the performance of this algorithm matches the performance of the classical algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.