Abstract
Let $k$ be a perfect field of characteristic $p>0$ and let $\operatorname{W}$ be the ring of Witt vectors of $k$. In this article, we give a new proof of the Frobenius descent for convergent isocrystals on a variety over $k$ relative to $\operatorname{W}$. This proof allows us to deduce an analogue of the de Rham complexes comparison theorem of Berthelot [$\mathscr{D}$-modules arithmétiques. II. Descente par Frobenius, Mém. Soc. Math. Fr. (N.S.) 81 (2000)] without assuming a lifting of the Frobenius morphism. As an application, we prove a version of Berthelot’s conjecture on the preservation of convergent isocrystals under the higher direct image by a smooth proper morphism of $k$-varieties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.