Abstract

Balanced sequences and balanced codes have attracted a lot of research in the last seventy years due to their diverse applications in information theory as well as other areas of computer science and engineering. There have been some methods to classify balanced sequences. This work suggests two new different hierarchies to classify these sequences. The first one is based on the largest <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\ell $ </tex-math></inline-formula> for which each <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\ell $ </tex-math></inline-formula> -tuple is contained the same amount of times in the sequence. This property is a generalization for the property required for de Bruijn sequences. The second hierarchy is based on the number of balanced derivatives of the sequence. Enumeration for each such family of sequences and efficient encoding and decoding algorithms are provided in this paper.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call