Abstract

In this paper, we discuss partial differential equations with multiple scales for which scale resolution is needed in some subregions, while a separation of scale and numerical homogenization is possible in the remaining part of the computational domain. Departing from the classical coupling approach that often relies on artificial boundary conditions computed from some coarse grain simulation, we propose a coupling procedure in which virtual boundary conditions are obtained from the minimization of a coarse grain and a fine-scale model in overlapping regions where both models are valid. We discuss this method with a focus on interface control and a numerical strategy based on non-matching meshes in the overlap. A fully discrete a priori error analysis of the heterogeneous coupled multiscale method is derived, and numerical experiments that illustrate the efficiency and flexibility of the proposed strategy are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.