Abstract
We consider a heat conductor having initial constant temperature and zero boundary temperature at every time. The hot spot is the point at which temperature attains its maximum at each given time. For convex conductors, if the hot spot does not move in time, we prove symmetry results for planar triangular and quadrangular conductors. Then, we examine the case of a general conductor and, by an asymptotic formula, we prove that, if there is a stationary critical point, not necessarily the hot spot, then the conductor must satisfy a geometric condition. In particular, we show that there is no stationary critical point inside planar non-convex quadrangular conductors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.