Abstract
Anisotropic heat conduction in a plasma embedded in a magnetic field with irregular, possibly chaotic, field lines is discussed. If the collisional mean free path exceeds the electron gyroradius, the heat conductivity is much larger along the field lines than across them, and this enhances the transport across a domain where good flux surfaces do not exist. Recognising that anisotropic heat conduction may be cast in a variational form, and by constructing increasingly sophisticated trial functions that are based on invariant and almost-invariant structures under the magnetic field-line flow, bounds are derived on this enhancement and on the temperature variation along the magnetic field. In this way, remarkably accurate approximations for the temperature can be rapidly constructed without solving the diffusion equation, even in the small perpendicular-diffusion limit when the solution for the temperature is dominated by the fractal structure the magnetic field lines.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.