Abstract

LetX be an Hausdorff space. We say thatX is a CO space, ifX is compact and every closed subspace ofX is homeomorphic to a clopen subspace ofX, andX is a hereditarily CO space (HCO space), if every closed subspace is a CO space. It is well-known that every well-ordered chain with a last element, endowed with the interval topology, is an HCO space, and every HCO space is scattered. In this paper, we show the following theorems:

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.