Abstract

We present unified approach to obtain sharp mean-squared and multiplicative inequalities of Hardy-Littlewood-Poly\'a and Taikov types for multiple closed operators acting on Hilbert space. We apply our results to establish new sharp inequalities for the norms of powers of the Laplace-Beltrami operators on compact Riemmanian manifolds and derive the well-known Taikov and Hardy-Littlewood-Poly\'a inequalities for functions defined on $d$-dimensional space in the limit case. Other applications include the best approximation of unbounded operators by linear bounded ones and the best approximation of one class by elements of other class. In addition, we establish sharp Solyar-type inequalities for unbounded closed operators with closed range.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.