Abstract

An S-box is a non-linear transformation that takes n bits as input and returns m bits. This transformation is most easily represented as a nm lookup table. Most often, only balanced S-boxes are used in cryptography. This means that the number of input bits is equal to the number of output bits. The S-box is an important part of most symmetric ciphers. The selection of the correct substitution makes the link between the key and the ciphertext more complex (non-linear), which makes it much more difficult to hack. This paper deals with a hardware implementation of S-boxes. This implementation can be realized by using logical conjunction, disjunction, negation and delay blocks. The main indicator of productivity of such implementations is a circuit depth, namely the maximum length of a simple way of the circuit and a circuit complexity, namely the quantity of logic elements (negation elements are not taken into account). The article considers the standard synthesis methods (based on DNF, Shannon, Lupanov), proposes a new algorithm to minimize the complexity of an arbitrary Boolean functions system and a way to reduce the complexity of the circuit obtained after simplification by the ESPRESSO algorithm of DNF of the function related to the output of the S-box. To compare the efficiency of the methods, the C++ program was created that generates a circuit in the Verilog language. The estimates of depth and complexity are obtained for the schemes produced as a result of the programs operation. The article ends with a comparison of the efficiency of S-box schemes of known cryptographic standards obtained as the output of the program (with each other and with the result of the Logic Friday program).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.