Abstract

In this paper we present a hardware implementation of an algorithm for generating node disjoint routes in a Kautz network. Kautz networks are based on a family of digraphs described by W.H. Kautz[Kautz 68]. A Kautz network with in-degree and out-degree d has N = d k + d k−1 nodes (for any cardinals d, k>0). The diameter is at most k, the degree is fixed and independent of the network size. Moreover, it is fault-tolerant, the connectivity is d and the mapping of standard computation graphs such as a linear array, a ring and a tree on a Kautz network is straightforward. The network has a simple routing mechanism, even when nodes or links are faulty. Imase et al. [Imase 86] showed the existence of d node disjoint paths between any pair of vertices. In Smit et al. [Smit 91] an algorithm is described that generates d node disjoint routes between two arbitrary nodes in the network. In this paper we present a simple and fast hardware implementation of this algorithm. It can be realized with standard components (Field Programmable Gate Arrays).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.