Abstract
SynopsisInitial-boundary value problems for nonlinear first order partial differential equations ∂tu + H(x, t, u, Dxu) = 0 and corresponding boundary value problems H(x, u, Dxu) = 0 are studied in bounded sets, using Crandal's and Lions' notion of viscosity solutions. We give pointwise conditions on the boundary data that guarantee the existence of such solutions and estimate their moduli of continuity in terms of continuity properties of the data. The results are applied to properties of the value function for certain differential games.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Royal Society of Edinburgh: Section A Mathematics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.