Abstract
Let ω ( G ) denote the number of components of a graph G. A connected graph G is said to be 1-tough if ω ( G − X )≤| X | for all X ⊆ V ( G ) with ω ( G − X )>1 . It is well-known that every hamiltonian graph is 1-tough, but that the reverse statement is not true in general, and even not for triangle-free graphs. We present two classes of triangle-free graphs for which the reverse statement holds, i.e., for which hamiltonicity and 1-toughness are equivalent. Our two main results give partial answers to two conjectures due to Nikoghosyan.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Electronic Journal of Graph Theory and Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.