Abstract
In a recent paper (Morris (2015) [1]), an inhomogeneous compactification of the extra dimension of a five-dimensional Kaluza–Klein metric has been shown to generate a position-dependent mass (PDM) in the corresponding four-dimensional system. As an application of this dimensional reduction mechanism, a specific static dilatonic scalar field has been connected with a PDM Lagrangian describing a well-known nonlinear PDM oscillator. Here we present more instances of this construction that lead to PDM systems with radial symmetry, and the properties of their corresponding inhomogeneous extra dimensions are compared with the ones in the nonlinear oscillator model. Moreover, it is also shown how the compactification introduced in this type of models can alternatively be interpreted as a novel mechanism for the dynamical generation of curvature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.