Abstract

We consider image denoising problems formulated as variational problems. It is known that Hamilton–Jacobi PDEs govern the solution of such optimization problems when the noise model is additive. In this work, we address certain nonadditive noise models and show that they are also related to Hamilton–Jacobi PDEs. These findings allow us to establish new connections between additive and nonadditive noise imaging models. Specifically, we study how the solutions to these optimization problems depend on the parameters and the observed images. We show that the optimal values are ruled by some Hamilton–Jacobi PDEs, while the optimizers are characterized by the spatial gradient of the solution to the Hamilton–Jacobi PDEs. Moreover, we use these relations to investigate the asymptotic behavior of the variational model as the parameter goes to infinity, that is, when the influence of the noise vanishes. With these connections, some non-convex models for nonadditive noise can be solved by applying convex optimization algorithms to the equivalent convex models for additive noise. Several numerical results are provided for denoising problems with Poisson noise or multiplicative noise.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.