Abstract
We report the characteristics of epitaxial growth and properties of vanadium oxide (VO2) thin films on sapphire (0001) substrates. Pulsed laser deposition was used to grow (002) oriented VO2 films on sapphire (0001). Transmission electron microscopy studies showed that the orientation relationship between the substrate and the thin film is: (002)f2∥(0006)sub3 and [010]f2 ∥sub. It was also established that VO2 has three different orientations in the film plane which are rotated by 60° from each other. The epitaxial growth of vanadium oxide on sapphire (0001) has been explained in the framework of domain matching epitaxy (DME). Electrical resistivity measurements as a function of temperature showed a sharp transition with a hysteresis width ˜5 °C, and large resistance change (˜1.5 × 104) from the semiconductor phase to the metal phase. It is interesting to note that in spite of large angle twin boundaries in these VO2 films, the SMT characteristics are better than those observed for polycrystalline films. The higher width of thermal hysteresis for the VO2 film on c-sapphire compared to a bulk single VO2 crystal and a single-crystal VO2 film on r-sapphire can be attributed to the existence of these large-angle twin grain boundaries. These findings can provide insight into the phase transformation characteristics of VO2, which has important applications in switching and memory devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.