Abstract
We examine the question of quasidiagonality for C*-algebras of discrete amenable groups from a variety of angles. We give a quantitative version of Rosenbergʼs theorem via paradoxical decompositions and a characterization of quasidiagonality for group C*-algebras in terms of embeddability of the groups. We consider several notable examples of groups, such as topological full groups associated with Cantor minimal systems and Abelsʼ celebrated example of a finitely presented solvable group that is not residually finite, and show that they have quasidiagonal C*-algebras. Finally, we study strong quasidiagonality for group C*-algebras, exhibiting classes of amenable groups with and without strongly quasidiagonal C*-algebras.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.