Abstract
We study parameterized complexity of a generalization of the classical Feedback Vertex Set problem, namely the Group Feedback Vertex Set problem: we are given a graph G with edges labeled with group elements, and the goal is to compute the smallest set of vertices that hits all cycles of G that evaluate to a non-null element of the group. This problem generalizes not only Feedback Vertex Set, but also Subset Feedback Vertex Set, Multiway Cut and Odd Cycle Transversal . Completing the results of Guillemot [Discr. Opt. 2011], we provide a fixed-parameter algorithm for the parameterization by the size of the cutset only. Our algorithm works even if the group is given as a blackbox performing group operations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.