Abstract

We consider a class of sequential network interdiction problem settings where the interdictor has incomplete initial information about the network while the evader has complete knowledge of the network including its structure and arc costs. In each decision epoch, the interdictor can block (for the duration of the epoch) at most k arcs known to him/her. By observing the evader’s actions, the interdictor learns about the network structure and costs and thus, can adjust his/her actions in subsequent decision epochs. It is known from the literature that if the evader is greedy (i.e., the shortest available path is used in each decision epochs), then under some assumptions the greedy interdiction policies that block k-most vital arcs in each epoch are efficient and have a finite regret. In this paper, we consider the evader’s perspective and explore deterministic “strategic” evasion policies under the assumption that the interdictor is greedy. We first study the theoretical computational complexity of the evader’s problem. Then we derive basic constructive properties of optimal evasion policies for two decision epochs when the interdictor has no initial information about the network structure. These properties are then exploited for the design of a heuristic algorithm for a strategic evader in a general setting with an arbitrary time horizon and any initial information available to the interdictor. Our computational experiments demonstrate that the proposed heuristic outperforms the greedy evasion policy on several classes of synthetic network instances under either perfect or noisy information feedback. Finally, some interesting insights from our theoretical and computational results conclude the paper.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call