Abstract

At the dawn of a golden age for gravitational wave astronomy, we must leave no stone unturned in our quest for new phenomena beyond our current understanding of General Relativity (GR), particle physics and nuclear physics. In this paper we discuss gravitational echoes from ultracompact stars. We restrict our analysis to exact solutions of Einstein field equations in GR that are supported by an isotropic fluid with a physically motivated equations of state (EoS), and in particular we impose the constraint of causality. Our main conclusion is that ultracompact objects belonging to this category are not able to generate gravitational echoes like those that characterize the relaxation phase of a putative black hole mimicker. Nevertheless, we identify a class of physical exotic objects that are compact enough to accommodate the presence of an external unstable light ring, thus opening the possibility of trapping gravitational radiation and affecting the ringdown phase of a merger event. Most importantly, we show that once rotation is included these stars—contrary to what usually expected for ultracompact objects—are not plagued by any ergoregion instability. We extend our analysis for arbitrary values of angular velocity up to the Keplerian limit, and we comment about potential signals relevant for gravitational wave interferometers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.