Abstract
An edge metric generator of a connected graph G is a vertex subset S for which every two distinct edges of G have distinct distance to some vertex of S, where the distance between a vertex v and an edge e is defined as the minimum of distances between v and the two endpoints of e in G. The smallest cardinality of an edge metric generator of G is the edge metric dimension, denoted by dime(G). It follows that 1≤dime(G)≤n−1 for any n-vertex graph G. A graph whose edge metric dimension achieves the upper bound is topful. In this paper, the structure of topful graphs is characterized, and many necessary and sufficient conditions for a graph to be topful are obtained. Using these results we design an O(n3) time algorithm which determines whether a graph of order n is topful or not. Moreover, we describe and address an interesting class of topful graphs whose super graphs obtained by adding one edge are not topful.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.