Abstract
Abstract For a simple connected graph G of order n having distance signless Laplacian eigenvalues ρ 1 Q ≥ ρ 2 Q ≥ ⋯ ≥ ρ n Q \rho _1^Q \ge \rho _2^Q \ge \cdots \ge \rho _n^Q , the distance signless Laplacian energy DSLE(G) is defined as D S L E ( G ) = ∑ i = 1 n | ρ i Q - 2 W ( G ) n | DSLE\left( G \right) = \sum\nolimits_{i = 1}^n {\left| {\rho _i^Q - {{2W\left( G \right)} \over n}} \right|} where W(G) is the Weiner index of G. We show that the complete split graph has the minimum distance signless Laplacian energy among all connected graphs with given independence number. Further, we prove that the graph Kk ∨ ( Kt∪ Kn−k−t), 1 ≤ t ≤ ⌊ n - k 2 ⌋ 1 \le t \le \left\lfloor {{{n - k} \over 2}} \right\rfloor has the minimum distance signless Laplacian energy among all connected graphs with vertex connectivity k.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.