Abstract
The paper contains a construction of a universal countable graph, different from the Rado graph, such that for any of its vertices both the neighbourhood and the non-neighbourhood induce subgraphs isomorphic to the whole graph. This solves an open problem proposed by A. Bonato; see Problem 20 in Cameron (2003) [5]. We supply a construction of several non-isomorphic graphs with the property, and consider tournaments with an analogous property.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.