Abstract

J. Koolen posed the problem of studying distance-regular graphs in which neighborhoods of vertices are strongly regular graphs with nonprincipal eigenvalue at most t for a given positive integer t. This problem was solved earlier for t = 3. In the case t = 4, the problem was reduced to studying graphs in which neighborhoods of vertices have parameters (352,26,0,2), (352,36,0,4), (243,22,1,2), (729,112,1,20), (204,28,2,4), (232,33,2,5), (676,108,2,20), (85,14,3,2), or (325,54,3,10). In the present paper, we prove that a distance-regular graph in which neighborhoods of vertices are strongly regular with parameters (85, 14, 3, 2) or (325, 54, 3, 10) has intersection array {85, 70, 1; 1, 14, 85} or {325, 270, 1; 1, 54, 325}. In addition, we find possible automorphisms of a graph with intersection array {85, 70, 1; 1, 14, 85}.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.