Abstract

We formalize a potentially rich new streaming model, the semi-streaming model, that we believe is necessary for the fruitful study of efficient algorithms for solving problems on massive graphs whose edge sets cannot be stored in memory. In this model, the input graph, G=(V,E), is presented as a stream of edges (in adversarial order), and the storage space of an algorithm is bounded by O(n·polylog n), where n = |V|. We are particularly interested in algorithms that use only one pass over the input, but, for problems where this is provably insufficient, we also look at algorithms using constant or, in some cases, logarithmically many passes. In the course of this general study, we give semi-streaming constant approximation algorithms for the unweighted and weighted matching problems, along with a further algorithm improvement for the bipartite case. We also exhibit log n/log log n semi-streaming approximations to the diameter and the problem of computing the distance between specified vertices in a weighted graph. These are complemented by Ω (log(1 − − ε) n) lower bounds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.