Abstract
Today Graphics Processing Units (GPUs) are a largely underexploited resource on existing desktops and a possible cost-effective enhancement to high-performance systems. To date, most applications that exploit GPUs are specialized scientific applications. Little attention has been paid to harnessing these highly-parallel devices to support more generic functionality at the operating system or middleware level. This study starts from the hypothesis that generic middleware-level techniques that improve distributed system reliability or performance (such as content addressing, erasure coding, or data similarity detection) can be significantly accelerated using GPU support. We take a first step towards validating this hypothesis and we design StoreGPU, a library that accelerates a number of hashing-based middleware primitives popular in distributed storage system implementations. Our evaluation shows that StoreGPU enables up twenty five fold performance gains on synthetic benchmarks as well as on a high-level application: the online similarity detection between large data files.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.