Abstract

In this paper we consider an intra-host model for the dynamics of malaria. The model describes the dynamics of the blood stage malaria parasites and their interaction with host cells, in particular red blood cells (RBC) and immune effectors. We establish the equilibrium points of the system and analyze their stability using the theory of competitive systems, compound matrices and stability of periodic orbits. We established that the disease-free equilibrium is globally stable if and only if the basic reproduction number satisfies R 0 ⩽ 1 and the parasite will be cleared out of the host. If R 0 > 1 , a unique endemic equilibrium is globally stable and the parasites persist at the endemic steady state. In the presence of the immune response, the numerical analysis of the model shows that the endemic equilibrium is unstable.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.