Abstract

In this paper, the stability analysis problem is investigated for stochastic bi-directional associative memory (BAM) neural networks with Markovian jumping parameters and mixed time delays. Both the global asymptotic stability and global exponential stability are dealt with. The mixed time delays consist of both the discrete delays and the distributed delays. Without assuming the symmetry of synaptic connection weights and the monotonicity and differentiability of activation functions, we employ the Lyapunov---Krasovskii stability theory and the Ito differential rule to establish sufficient conditions for the delayed BAM networks to be stochastically globally exponentially stable and stochastically globally asymptotically stable, respectively. These conditions are expressed in terms of the feasibility to a set of linear matrix inequalities (LMIs). Therefore, the global stability of the delayed BAM with Markovian jumping parameters can be easily checked by utilizing the numerically efficient Matlab LMI toolbox. A simple example is exploited to show the usefulness of the derived LMI-based stability conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.