Abstract

This paper investigates a new mathematical SQIR model for COVID-19 by means of four dimensions; susceptible, quarantine, infected and recovered (SQIR) via Non-linear Saturated Incidence Rate. First of all the model is formulated in the form of differential equations. Disease-free, endemic equilibriums and Basic Reproduction Number are found for the said model. Local Stability is analyzed through Jacobean Matrix while Lyapunov Function is constructed for the study of Global Stability of the Model. Using nonstandard finite difference method, numerical results are simulated. By Simulation, we mean how protection, exposure, death and cure rates affect the Susceptible, Quarantined, Infected and recovered population with the passage of time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.