Abstract
In this article we study the operator version of a first order in time partial differential inclusion as well as its time discretization obtained by an implicit Euler scheme. This technique, known as the Rothe method, yields the semidiscrete trajectories that are proved to converge to the solution of the original problem. While both the time continuous problem and its semidiscretization can have nonunique solutions we prove that, as times goes to infinity, all trajectories are attracted towards certain compact and invariant sets, so-called global attractors. We prove that the semidiscrete attractors converge upper-semicontinuously to the global attractor of time continuous problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.