Abstract

We prove that the vertex set of a K ℵ 0 -free weakly median graph G endowed with the weak topology associated with the geodesic convexity on V ( G ) is compact if and only if G has one of the following equivalent properties: (1) G contains no isometric rays; (2) any chain of interval of G ordered by inclusion is finite; (3) every self-contraction of G fixes a non-empty finite regular weakly median subgraph of G. We study the self-contractions of K ℵ 0 -free weakly median graphs which fix no finite set of vertices. We also follow a suggestion of Imrich and Klavzar [Product Graphs, Wiley, New York, 2000] by defining different centers of such a graph G, each of them giving rise to a non-empty finite regular weakly median subgraph of G which is fixed by all automorphisms of G.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.