Abstract
The characteristics of a new assembly for the shock consolidation of difficult-to-consolidate powders, such as inter-metallic compounds or ceramic materials, were investigated by both the experimental method and numerical simulation method. The assembly consists of an explosive container, a water chamber, and a powder container. Once the explosive is detonated, a detonation wave occurs and propagates, and then impinges on the water surface of the water chamber. After that, there occurs immediately an underwater shock wave in the water chamber. The underwater shock wave interacts with the wall of the chamber during its propagation so that its strength is increased by the converging effect. We used the usual shadow graph system to photograph the interaction process between detonation wave and water. We also used a Manganin piezoresistance gage to measure the converged pressure of the conical water chamber. Finally, we numerically investigated, in detail, the converging effects of the various conical water chambers on the underwater shock waves. The experimental results and the correspondingly numerical results agree quite well with each other.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.