Abstract

In simulation we often have to generate correlated random variables by giving a reference intercorrelation matrix, R or Q. The matrix R is positive definite and a valid correlation matrix. The matrix Q may appear to be a correlation matrix but it may be invalid (negative definite). With R(m,m) it is easy to generate X(n,m), but Q(m,m) cannot give real X(n,m). So, Q has to be converted into the near-most R matrix by some procedure. NJ Higham (2002) provides a method to generate R from Q that satisfies the minimum Frobenius norm condition for (Q-R). Ali Al-Subaihi (2004) gives another method, but his method does not produce an optimal R from Q. In this paper we propose an algorithm to produce an optimal R from Q by minimizing the maximum norm of (Q-R). A Computer program (in FORTRAN) also has been provided. Having obtained R from Q, the paper gives an algorithm to obtain X(n,m) from R(m,m). The proposed algorithm is based on factorization of R, yet it is different from the Kaiser Dichman (1962) procedure. A computer program also has been given.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.