Abstract
In the domain of approximate metric search, the Permutation-based Indexing (PBI) approaches have been proved to be particularly suitable for dealing with large data collections. These methods employ a permutation-based representation of the data, which can be efficiently indexed using data structures such as inverted files. In the literature, the definition of the permutation of a metric object was derived by reordering the distances of the object to a set of pivots. In this paper, we aim at generalizing this definition in order to enlarge the class of permutations that can be used by PBI approaches. As a practical outcome, we defined a new type of permutation that is calculated using distances from pairs of pivots. The proposed technique permits us to produce longer permutations than traditional ones for the same number of object-pivot distance calculations. The advantage is that the use of inverted files built on permutation prefixes leads to greater efficiency in the search phase when longer permutations are used.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.