Abstract

We present an analysis of generalized Nash equilibrium problems in infinite-dimensional spaces with possibly non-convex objective functions of the players. Such settings arise, for instance, in games that involve nonlinear partial differential equation constraints. Due to non-convexity, we work with equilibrium concepts that build on first order optimality conditions, especially Quasi-Nash Equilibria (QNE), i.e. first-order optimality conditions for (Generalized) Nash Equilibria, and Variational Equilibria (VE), i.e. first-order optimality conditions for Normalized Nash Equilibria. We prove existence of these types of equilibria and study characterizations of them via regularized (and localized) Nikaido-Isoda merit functions. We also develop continuity and (continuous) differentiability results for these merit functions under quite weak assumptions, using a generalization of Danskin's theorem. They provide a theoretical foundation for, e.g. using globalized descent methods for computing QNE or VE.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.