Abstract
We propose a method to generate a max-stable process in C[0, 1] from a max-stable random vector in Rd by generalizing the max-linear model established by Wang and Stoev (2011). For this purpose, an interpolation technique that preserves max-stability is proposed. It turns out that if the random vector follows some finite-dimensional distribution of some initial max-stable process, the approximating processes converge uniformly to the original process and the pointwise mean-squared error can be represented in a closed form. The obtained results carry over to the case of generalized Pareto processes. The introduced method enables the reconstruction of the initial process only from a finite set of observation points and, thus, a reasonable prediction of max-stable processes in space becomes possible. A possible extension to arbitrary dimensions is outlined.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.