Abstract

This paper deals with a special class of hyperalgebra, called Boolean hyperalgebra, which is redefined in it. We introduce the concepts of generalized intuitionistic fuzzy subhyperalgebras and generalized intuitionistic fuzzy hyperideals of Boolean hyperalgebras. A necessary and sufficient condition for an intuitionistic fuzzy subset of the Boolean hyperalgebra to be a generalized intuitionistic fuzzy subhyperalgebra (hyperideal) is proved. Images and inverse-images of generalized intuitionistic fuzzy subhyperalgebra (hyperideal) under Boolean hyperalgebra homomorphism are studied. MSC: 03E72, 08A72.

Highlights

  • The applications of mathematics in other disciplines, for example, in informatics, play a key role, and they have represented, in the last decades, one of the purpose of the study of the experts of hyperstructure theory all over the world

  • In the following decades and nowadays, a number of different hyperstructures have been widely studied from the theoretical point of view and for their applications to many subjects of pure and applied mathematics by many mathematicians such as in fuzzy sets and rough set theory, optimization theory, theory of discrete event dynamical systems, cryptography, codes, analysis of computer programs, automata, formal language theory, combinatorics, artificial intelligence, probability, graphs and hypergraphs, geometry, lattices and binary relations

  • In this paper, using Atanassov’s idea, we introduce the concepts of generalized intuitionistic fuzzy subhyperalgebras and generalized intuitionistic fuzzy hyperideals of Boolean hyperalgebras

Read more

Summary

Introduction

The applications of mathematics in other disciplines, for example, in informatics, play a key role, and they have represented, in the last decades, one of the purpose of the study of the experts of hyperstructure theory all over the world. Images and inverse-images of the generalized intuitionistic fuzzy subhyperalgebra (hyperideal) under Boolean hyperalgebra homomorphism are studied.

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.