Abstract

In this paper, we introduce Fibonacci backward difference operator [Formula: see text] of fractional order l by the composition of Fibonacci band matrix [Formula: see text] and difference operator [Formula: see text] of fractional order l, defined by [Formula: see text] and introduce sequence spaces [Formula: see text] and [Formula: see text] We present some topological properties, obtain Schauder basis and determine [Formula: see text]-, [Formula: see text]- and [Formula: see text]-duals of the spaces [Formula: see text] and [Formula: see text] We characterize certain classes of matrix mappings from the spaces [Formula: see text] and [Formula: see text] to any of the space [Formula: see text] [Formula: see text] [Formula: see text] or [Formula: see text] Finally we compute necessary and sufficient conditions for a matrix operator to be compact on the spaces [Formula: see text] and [Formula: see text]

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.