Abstract

Using a framework of Dirac algebra, the Clifford algebra appropriate for Minkowski space-time, the formulation of classical electromagnetism including both electric and magnetic charge is explored. Employing the two-potential approach of Cabibbo and Ferrari, a Lagrangian is obtained that is dyality invariant and from which it is possible to derive by Hamilton's principle both the symmetrized Maxwell's equations and the equations of motion for both electrically and magnetically charged particles. This latter result is achieved by defining the variation of the action associated with the cross terms of the interaction Lagrangian in terms of a surface integral. The surface integral has an equivalent path-integral form, showing that the contribution of the cross terms is local in nature. The form of these cross terms derives in a natural way from a Dirac algebraic formulation, and, in fact, the use of the geometric product of Dirac algebra is an essential aspect of this derivation. No kinematic restrictions are associated with the derivation, and no relationship between magnetic and electric charge evolves from the (classical) formulation. However, it is indicated that in bound states quantum mechanical considerations will lead to a version of Dirac's quantization condition. A discussion of parity violation of the generalized electromagnetic theory is given, and a new approach to the incorporation of this violation into the formalism is suggested. Possibilities for extensions are mentioned.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call