Abstract

In this paper, we introduce constant slope (CS) and generalized constant ratio (GCR) submanifolds with higher codimension in Euclidean spaces. We firstly obtain a classification of GCR surfaces in Euclidean 4-spaces $${\mathbb {E}}^4$$ . Then, we get complete local classification of CS surfaces in $${\mathbb {E}}^4$$ . We also study GCR surfaces in terms of some of its geometrical invariants.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.