Abstract

Considering the important role in Gaussian related extreme value topics, we evaluate the Berman constants involved in the study of the sojourn time of Gaussian processes, given by $$ \mathcal{B}_{\alpha}^{h}(x, E) = {\int}_{\mathbb{R}} e^{z} \mathbb{P} \left\{{{\int}_{E} \mathbb{I}\left( \sqrt2B_{\alpha}(t) - |t|^{\alpha} - h(t) - z>0 \right) \text{d} t \!>\! x}\right\} \text{d} z,\quad x\in[0, \text{mes}(E)], $$ where mes(E) is the Lebesgue measure of a compact set $E\subset \mathbb {R}$, h is a continuous drift function, and Bα is a centered fractional Brownian motion (fBm) with Hurst index α/2 ∈ (0, 1]. This note specifies its explicit expression for α = 1 and α = 2 under certain conditions of drift functions. Explicit expressions of ${{\mathcal{B}}_{2}^{h}}(x, E)$ with typical drift functions are given and several bounds of ${\mathcal{B}}_{\alpha }^{h}(x, E)$ are established as well. Numerical studies are performed to illustrate the main results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.