Abstract

A matrix is said to have the Perron-Frobenius property if its spectral radius is aneigenvalue with a corresponding nonnegative eigenvector. Matrices having this and similar properties are studied in this paper as generalizations of nonnegative matrices. Sets consisting of such generalized nonnegative matrices are studied and certain topological aspects such as connectedness and closure are proved. Similarity transformations leaving such sets invariant are completely described, and it is shown that a nonnilpotent matrix eventually capturing the Perron-Frobenius propertyis in fact a matrix that already has it.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.