Abstract
This paper represents the second part of a study concerning the so-called G-multiobjective programming. A new approach to duality in differentiable vector optimization problems is presented. The techniques used are based on the results established in the paper: On G-invex multiobjective programming. Part I. Optimality by T.Antczak. In this work, we use a generalization of convexity, namely G-invexity, to prove new duality results for nonlinear differentiable multiobjective programming problems. For such vector optimization problems, a number of new vector duality problems is introduced. The so-called G-Mond---Weir, G-Wolfe and G-mixed dual vector problems to the primal one are defined. Furthermore, various so-called G-duality theorems are proved between the considered differentiable multiobjective programming problem and its nonconvex vector G-dual problems. Some previous duality results for differentiable multiobjective programming problems turn out to be special cases of the results described in the paper.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.